Prognostics Framework NDIA SEC Conference, San Diego CA

Presented By:

Ms. Mary Nolan, Giordano Automation Corp.

Authors:

Dr. Li Pi Su, U.S. Army TMDE

Ms. Becky Norman, Giordano Automation Corp.

Mr. Greg de Mare, Giordano Automation Corp.

What is the Prognostics Framework? A System-level prognostic/diagnostic capability

- Integrates sub-system/component specific diagnostic & prognostic software, BIT and parametric data using a "divide and conquer" strategy
- Provides a complete overall system health monitoring and management capability
- Reports on functional capability & mission readiness to aid operations decisions
- Anticipates maintenance workload & provides repair information interfaces to maintenance aids and support systems

The Prognostics Framework Integrates Prognostics Mechanisms and Interprets Results For Users

Predictive Techniques Incorporated

- Advanced, Item-Specific Prognostic Mechanisms (ANN, etc.)
- Linear Degradation of Signals / Measurements over time
- Historical Conclusions / Statistics
- Engineering Correlations

What is the Prognostics Framework? Generic Open Architecture

- Generically applicable open architecture software system
- Can be applied to existing and new weapon systems
- Can be embedded or off-board (real-time or near real-time)

How does the Prognostics Framework work?

• Embedded Environment

- Monitors data inputs from sensors,
 BIT, and other
 prognostic/diagnostic mechanisms
- Prognoses/Diagnoses failures in real time
- Provides complete system monitoring

• Off-line Environment

- Accepts all data available
- Additional Prognosis/Diagnosis
- Provides complete system health management
- Anticipates maintenance needs
- Integrates logistics software

How does the Prognostics Framework reason?

- 1. Accept prognostic/diagnostic software outputs, BIT and parametric data as *symptoms*
- 2. Apply model-based reasoning AI algorithms to prognose/diagnose the implication of out of tolerance *symptoms* on each future time point defined in the model
- 3. Identify the components and sub-systems affected by predicted failures *sub-system health*
- 4. Identify the functions and missions affected by predicted failures *mission readiness*
- 5. Identify the repair actions needed *anticipatory maintenance*

M1A1 Abrams WSSPR Demonstration Prognostic/Diagnostic System Integration

- Engine prognostic inputs from REDI-PRO
- Engine & LRU BIT
- Off-line diagnostic test results
- DPMCS observations from maintenance crew
- Post-Operations Debrief for anomaly filtering
- Prognostic Framework provides additional prognostics/diagnostics

- Provides an at-a-glance view of system health
- sub-system status
- sub-system degradation criticality to operation

- Sub-system details
- Hierarchical breakout of the sub-system
- Evidence for failure

- Prognostic
 Framework
 logs all data
 received
- Degradation over time

- Impact of
 Functional
 degradation on
 specific
 missions over
 time
- What functions are available?
- Mission Readiness

M1A1 Abrams WSSPR Demonstration Maintenance Support

- Current & anticipated maintenance workload
- Supports

 integrated IETMs,
 parts ordering
- Preventative maintenance
- Logistics planning
- Repair history is logged

M1A1 Abrams WSSPR Demonstration Maintenance Support

- Prognostic Framework prepopulates the necessary maintenance info
- Interfaces with GCSS-A via DTD/XML tagged data
- Interfaces with ETM-I parts ordering via MS-Access database
- Interfaces with Multi-View logistics network

Generalized Information Architecture

- System Design Data (parts, faults)
- Diagnostic/Prognostic Input Descriptions (data definitions, format, location) REDI-PRO, BIT, Sensor data, etc.
- Diagnostic/Prognostic Preprocessing (mathematical calculations, functions, and filtering)
- Prognostic Times to be Extrapolated during runtime
- Fault/Symptom/Time matrix for failure descriptions
- Operational Support Information missions, functions, operational actions
- Maintenance Support Information URL links to other software system, part numbers, ordering information

Army FCS Armament: Viking Program (TC2) Adaptive Firing Control

- Monitor armament temperature/stress
- Dynamically adapt rate of fire to avoid an out of tolerance condition
- Manage system degradation
- Maximize armament performance

- → Failed State
- --- Without Adaptive Firing Control
- **→** With Adaptive Firing Control

Real-time system monitoring!

Army FCS Armament: Viking Program (TC2) Integrated Mathematical Model Approach

- Tighter threshold based on estimated sensor reading for specific operating conditions and control commands
- Increased fault detection
- Reduces false alarms and false dismissals
- Enables sensor validation based on inherently redundant sensor info

Flexibility!

Army FCS Armament: Viking Program (TC2) Health Management

- Integrates all system prognostic & diagnostic data
- Provides total armament health monitoring
- Expandable to other FCS subsystems
- Integrates maintenance requirements - IETM, parts ordering

Summary

- Allows a system to optimize diagnostic capability
- Maximizes the use and effectiveness of BIT/BITE information
- Provides a divide and conquer approach
- Framework allows system managers to CONVERGE on prognostic capability as applications and technologies mature